PhD Candidate
Phone: +31 88 75 50565

Steffen studied Medical Engineering Sciences at the University of Lübeck, Germany. Within this program, he got the chance to be an intern at the University of California, Berkeley. He joined the Berkeley Imaging Systems Laboratory where he worked on comparing the sensitivity of MRI to Magnetic Particle Imaging. For his Master thesis, he completed a project on the accelerated reconstruction for small-animal pinhole PET at MILabs in Utrecht, Netherlands.

In October 2017, Steffen started his PhD at the Image Sciences Institute of the UMC Utrecht and joined the Quantitative Medical Image Analysis Group. He is part of the program
Deep learning in medical image analysis (DLMedIA) where he is currently working on the development of novel deep learning algorithms for the automatic analysis of high-dimensional medical images, mainly spectral CT.

Papers in conference proceedings

1.S. Bruns, J.M. Wolterink, R.W. van Hamersvelt, T. Leiner, I. Išgum. CNN-based segmentation of the cardiac chambers and great vessels in non-contrast-enhanced cardiac CT. In: Medical Imaging with Deep Learning (MIDL 2019), 2019 Abstract | pdf )
2.S. Bruns, J.M. Wolterink, R.W. van Hamersvelt, M. Zreik, T. Leiner, I. Išgum. Improving myocardium segmentation in cardiac CT angiography using spectral information. In: SPIE Medical Imaging, 2019 Abstract | pdf )